|
Ed Kuijpers, Luigi Carotenuto, Jean- Cristophe Malapert, Daniela Markov-Vetter, Igor Melatti, Andrea Orlandini, and Ranni Pinchuk. "Collaboration on ISS Experiment Data and Knowledge Representation." In Proc. of IAC 2012. Vol. D.5.11., 2012.
|
|
|
Benedetto Intrigila, Ivano Salvo, and Stefano Sorgi. "A characterization of weakly Church-Rosser abstract reduction systems that are not Church-Rosser." Information and Computation 171, no. 2 (2001): 137–155. Academic Press, Inc.. ISSN: 0890-5401. DOI: 10.1006/inco.2001.2945.
Abstract: Basic properties of rewriting systems can be stated in the framework of abstract reduction systems (ARS). Properties like confluence (or Church-Rosser, CR) and weak confluence (or weak Church-Rosser, WCR) and their relationships can be studied in this setting: as a matter of fact, well-known counterexamples to the implication WCR CR have been formulated as ARS. In this paper, starting from the observation that such counterexamples are structurally similar, we set out a graph-theoretic characterization of WCR ARS that is not CR in terms of a suitable class of reduction graphs, such that in every WCR not CR ARS, we can embed at least one element of this class. Moreover, we give a tighter characterization for a restricted class of ARS enjoying a suitable regularity condition. Finally, as a consequence of our approach, we prove some interesting results about ARS using the mathematical tools developed. In particular, we prove an extension of the Newmanââ¬â¢s lemma and we find out conditions that, once assumed together with WCR property, ensure the unique normal form property. The Appendix treats two interesting examples, both generated by graph-rewriting rules, with specific combinatorial properties.
|
|
|
Benedetto Intrigila, Igor Melatti, Alberto Tofani, and Guido Macchiarelli. "Computational models of myocardial endomysial collagen arrangement." Computer Methods and Programs in Biomedicine 86, no. 3 (2007): 232–244. Elsevier North-Holland, Inc.. ISSN: 0169-2607. DOI: 10.1016/j.cmpb.2007.03.004.
Abstract: Collagen extracellular matrix is one of the factors related to high passive stiffness of cardiac muscle. However, the architecture and the mechanical aspects of the cardiac collagen matrix are not completely known. In particular, endomysial collagen contribution to the passive mechanics of cardiac muscle as well as its micro anatomical arrangement is still a matter of debate. In order to investigate mechanical and structural properties of endomysial collagen, we consider two alternative computational models of some specific aspects of the cardiac muscle. These two models represent two different views of endomysial collagen distribution: (1) the traditional view and (2) a new view suggested by the data obtained from scanning electron microscopy (SEM) in NaOH macerated samples (a method for isolating collagen from the other tissue). We model the myocardial tissue as a net of spring elements representing the cardiomyocytes together with the endomysial collagen distribution. Each element is a viscous elastic spring, characterized by an elastic and a viscous constant. We connect these springs to imitate the interconnections between collagen fibers. Then we apply to the net of springs some external forces of suitable magnitude and direction, obtaining an extension of the net itself. In our setting, the ratio forces magnitude /net extension is intended to model the stress /strain ratio of a microscopical portion of the myocardial tissue. To solve the problem of the correct identification of the values of the different parameters involved, we use an artificial neural network approach. In particular, we use this technique to learn, given a distribution of external forces, the elastic constants of the springs needed to obtain a desired extension as an equilibrium position. Our experimental findings show that, in the model of collagen distribution structured according to the new view, a given stress /strain ratio (of the net of springs, in the sense specified above) is obtained with much smaller (w.r.t. the other model, corresponding to the traditional view) elasticity constants of the springs. This seems to indicate that by an appropriate structure, a given stiffness of the myocardial tissue can be obtained with endomysial collagen fibers of much smaller size.
|
|
|
Benedetto Intrigila, Daniele Magazzeni, Igor Melatti, and Enrico Tronci. "A Model Checking Technique for the Verification of Fuzzy Control Systems." In CIMCA '05: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce Vol-1 (CIMCA-IAWTIC'06), 536–542. Washington, DC, USA: IEEE Computer Society, 2005. ISSN: 0-7695-2504-0-01. DOI: 10.1109/CIMCA.2005.1631319.
Abstract: Fuzzy control is well known as a powerful technique for designing and realizing control systems. However, statistical evidence for their correct behavior may be not enough, even when it is based on a large number of samplings. In order to provide a more systematic verification process, the cell-to-cell mapping technology has been used in a number of cases as a verification tool for fuzzy control systems and, more recently, to assess their optimality and robustness. However, cell-to-cell mapping is typically limited in the number of cells it can explore. To overcome this limitation, in this paper we show how model checking techniques may be instead used to verify the correct behavior of a fuzzy control system. To this end, we use a modified version of theMurphi verifier, which ease the modeling phase by allowing to use finite precision real numbers and external C functions. In this way, also already designed simulators may be used for the verification phase. With respect to the cell mapping technique, our approach appears to be complementary; indeed, it explores a much larger number of states, at the cost of being less informative on the global dynamic of the system.
|
|
|
M. P. Hengartner, T. H. C. Kruger, K. Geraedts, E. Tronci, T. Mancini, F. Ille, M. Egli, S. Röblitz, R. Ehrig, L. Saleh et al. "Negative affect is unrelated to fluctuations in hormone levels across the menstrual cycle: Evidence from a multisite observational study across two successive cycles." Journal of Psychosomatic Research 99 (2017): 21–27. DOI: 10.1016/j.jpsychores.2017.05.018.
|
|
|
B. P. Hayes, I. Melatti, T. Mancini, M. Prodanovic, and E. Tronci. "Residential Demand Management using Individualised Demand Aware Price Policies." IEEE Transactions On Smart Grid 8, no. 3 (2017): 1284–1294. DOI: 10.1109/TSG.2016.2596790.
|
|
|
Marco Gribaudo, Andras Horváth, Andrea Bobbio, Enrico Tronci, Ester Ciancamerla, and Michele Minichino. "Fluid Petri Nets and hybrid model checking: a comparative case study." Int. Journal on: Reliability Engineering & System Safety 81, no. 3 (2003): 239–257. Elsevier. DOI: 10.1016/S0951-8320(03)00089-9.
Abstract: The modeling and analysis of hybrid systems is a recent and challenging research area which is actually dominated by two main lines: a functional analysis based on the description of the system in terms of discrete state (hybrid) automata (whose goal is to ascertain conformity and reachability properties), and a stochastic analysis (whose aim is to provide performance and dependability measures). This paper investigates a unifying view between formal methods and stochastic methods by proposing an analysis methodology of hybrid systems based on Fluid Petri Nets (FPNs). FPNs can be analyzed directly using appropriate tools. Our paper shows that the same FPN model can be fed to different functional analyzers for model checking. In order to extensively explore the capability of the technique, we have converted the original FPN into languages for discrete as well as hybrid as well as stochastic model checkers. In this way, a first comparison among the modeling power of well known tools can be carried out. Our approach is illustrated by means of a ââ¬â¢real worldââ¬â¢ hybrid system: the temperature control system of a co-generative plant.
|
|
|
Marco Gribaudo, Andras Horváth, Andrea Bobbio, Enrico Tronci, Ester Ciancamerla, and Michele Minichino. "Model-Checking Based on Fluid Petri Nets for the Temperature Control System of the ICARO Co-generative Plant." In 21st International Conference on Computer Safety, Reliability and Security (SAFECOMP), edited by S. Anderson, S. Bologna and M. Felici, 273–283. Lecture Notes in Computer Science 2434. Catania, Italy: Springer, 2002. ISSN: 3-540-44157-3. DOI: 10.1007/3-540-45732-1_27.
Abstract: The modeling and analysis of hybrid systems is a recent and challenging research area which is actually dominated by two main lines: a functional analysis based on the description of the system in terms of discrete state (hybrid) automata (whose goal is to ascertain for conformity and reachability properties), and a stochastic analysis (whose aim is to provide performance and dependability measures). This paper investigates a unifying view between formal methods and stochastic methods by proposing an analysis methodology of hybrid systems based on Fluid Petri Nets (FPN). It is shown that the same FPN model can be fed to a functional analyser for model checking as well as to a stochastic analyser for performance evaluation. We illustrate our approach and show its usefulness by applying it to a ââ¬Åreal worldââ¬Â hybrid system: the temperature control system of a co-generative plant.
|
|
|
Roberto Gorrieri, Ruggero Lanotte, Andrea Maggiolo-Schettini, Fabio Martinelli, Simone Tini, and Enrico Tronci. "Automated analysis of timed security: a case study on web privacy." International Journal of Information Security 2, no. 3-4 (2004): 168–186. DOI: 10.1007/s10207-004-0037-9.
Abstract: This paper presents a case study on an automated analysis of real-time security models. The case study on a web system (originally proposed by Felten and Schneider) is presented that shows a timing attack on the privacy of browser users. Three different approaches are followed: LH-Timed Automata (analyzed using the model checker HyTech), finite-state automata (analyzed using the model checker NuSMV), and process algebras (analyzed using the model checker CWB-NC). A comparative analysis of these three approaches is given.
|
|
|
Riccardo Focardi, Roberto Gorrieri, Ruggero Lanotte, Andrea Maggiolo-Schettini, Fabio Martinelli, Simone Tini, and Enrico Tronci. "Formal Models of Timing Attacks on Web Privacy." Electronic Notes in Theoretical Computer Science 62 (2002): 229–243. Notes: TOSCA 2001, Theory of Concurrency, Higher Order Languages and Types. DOI: 10.1016/S1571-0661(04)00329-9.
Abstract: We model a timing attack on web privacy proposed by Felten and Schneider by using three different approaches: HL-Timed Automata, SMV model checker, and tSPA Process Algebra. Some comparative analysis on the three approaches is derived.
|
|