Corrado Böhm, and Enrico Tronci. "About Systems of Equations, X-Separability, and Left-Invertibility in the lambda-Calculus." Inf. Comput. 90, no. 1 (1991): 1–32. DOI: 10.1016/0890-5401(91)90057-9.
|
Adolfo Piperno, and Enrico Tronci. "Regular Systems of Equations in λ-calculus." Int. J. Found. Comput. Sci. 1, no. 3 (1990): 325–340. DOI: 10.1142/S0129054190000230.
Abstract: Many problems arising in equational theories like Lambda-calculus and Combinatory Logic can be expressed by combinatory equations or systems of equations. However, the solvability problem for an arbitrarily given class of systems is in general undecidable. In this paper we shall focus our attention on a decidable class of systems, which will be called regular systems, and we shall analyse some classical problems and well-known properties of Lambda-calculus that can be described and solved by means of regular systems. The significance of such class will be emphasized showing that for slight extensions of it the solvability problem turns out to be undecidable.
|
Adolfo Piperno, and Enrico Tronci. "Regular Systems of Equations in λ-calculus." In Ictcs. Mantova - Italy, 1989. DOI: 10.1142/S0129054190000230.
Abstract: Many problems arising in equational theories like Lambda-calculus and Combinatory Logic can be expressed by combinatory equations or systems of equations. However, the solvability problem for an arbitrarily given class of systems is in general undecidable. In this paper we shall focus our attention on a decidable class of systems, which will be called regular systems, and we shall analyse some classical problems and well-known properties of Lambda-calculus that can be described and solved by means of regular systems. The significance of such class will be emphasized showing that for slight extensions of it the solvability problem turns out to be undecidable.
|
Corrado Böhm, Adolfo Piperno, and Enrico Tronci. "Solving Equations in λ-calculus." In Proc. of: Logic Colloquium 88. Padova - Italy, 1989.
|
Corrado Böhm, and Enrico Tronci. "X-Separability and Left-Invertibility in lambda-calculus." In Symposium on Logic in Computer Science (LICS), 320–328. Ithaca, New York, USA: IEEE Computer Society, 1987.
|
Corrado Böhm, and Enrico Tronci. "X-separability and left-invertibility in the λ-calculus (extended abstract, invited paper)." In Proceedings of: Temi e prospettive della Logica e della Filosofia della Scienza contemporanea. Cesena - Italy, 1987.
|
Enrico Tronci. "On Computing Optimal Controllers for Finite State Systems." In CDC '97: Proceedings of the 36th IEEE International Conference on Decision and Control. Washington, DC, USA: IEEE Computer Society, 1997.
|
Enrico Tronci. "Optimal Finite State Supervisory Control." In CDC '96: Proceedings of the 35th IEEE International Conference on Decision and Control. Washington, DC, USA: IEEE Computer Society, 1996. DOI: 10.1109/CDC.1996.572981.
Abstract: Supervisory Controllers are Discrete Event Dynamic Systems (DEDSs) forming the discrete core of a Hybrid Control System. We address the problem of automatic synthesis of Optimal Finite State Supervisory Controllers (OSCs). We show that Boolean First Order Logic (BFOL) and Binary Decision Diagrams (BDDs) are an effective methodological and practical framework for Optimal Finite State Supervisory Control. Using BFOL programs (i.e. systems of boolean functional equations) and BDDs we give a symbolic (i.e. BDD based) algorithm for automatic synthesis of OSCs. Our OSC synthesis algorithm can handle arbitrary sets of final states as well as plant transition relations containing loops and uncontrollable events (e.g. failures). We report on experimental results on the use of our OSC synthesis algorithm to synthesize a C program implementing a minimum fuel OSC for two autonomous vehicles moving on a 4 x 4 grid.
|
Benedetto Intrigila, Daniele Magazzeni, Igor Melatti, and Enrico Tronci. "A Model Checking Technique for the Verification of Fuzzy Control Systems." In CIMCA '05: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce Vol-1 (CIMCA-IAWTIC'06), 536–542. Washington, DC, USA: IEEE Computer Society, 2005. ISSN: 0-7695-2504-0-01. DOI: 10.1109/CIMCA.2005.1631319.
Abstract: Fuzzy control is well known as a powerful technique for designing and realizing control systems. However, statistical evidence for their correct behavior may be not enough, even when it is based on a large number of samplings. In order to provide a more systematic verification process, the cell-to-cell mapping technology has been used in a number of cases as a verification tool for fuzzy control systems and, more recently, to assess their optimality and robustness. However, cell-to-cell mapping is typically limited in the number of cells it can explore. To overcome this limitation, in this paper we show how model checking techniques may be instead used to verify the correct behavior of a fuzzy control system. To this end, we use a modified version of theMurphi verifier, which ease the modeling phase by allowing to use finite precision real numbers and external C functions. In this way, also already designed simulators may be used for the verification phase. With respect to the cell mapping technique, our approach appears to be complementary; indeed, it explores a much larger number of states, at the cost of being less informative on the global dynamic of the system.
|
Francesco Brizzolari, Igor Melatti, Enrico Tronci, and Giuseppe Della Penna. "Disk Based Software Verification via Bounded Model Checking." In APSEC '07: Proceedings of the 14th Asia-Pacific Software Engineering Conference, 358–365. Washington, DC, USA: IEEE Computer Society, 2007. ISSN: 0-7695-3057-5. DOI: 10.1109/APSEC.2007.43.
Abstract: One of the most successful approach to automatic software verification is SAT based bounded model checking (BMC). One of the main factors limiting the size of programs that can be automatically verified via BMC is the huge number of clauses that the backend SAT solver has to process. In fact, because of this, the SAT solver may easily run out of RAM. We present two disk based algorithms that can considerably decrease the number of clauses that a BMC backend SAT solver has to process in RAM. Our experimental results show that using our disk based algorithms we can automatically verify programs that are out of reach for RAM based BMC.
|