Giuseppe Della Penna, Daniele Magazzeni, Alberto Tofani, Benedetto Intrigila, Igor Melatti, and Enrico Tronci. "Automated Generation Of Optimal Controllers Through Model Checking Techniques." In Informatics in Control Automation and Robotics. Selected Papers from ICINCO 2006, 107–119. Springer, 2008. DOI: 10.1007/978-3-540-79142-3_10.
|
Novella Bartolini, and Enrico Tronci. "On Optimizing Service Availability of an Internet Based Architecture for Infrastructure Protection." In Cnip., 2006.
|
Michele Cecconi, and Enrico Tronci. "Requirements Formalization and Validation for a Telecommunication Equipment Protection Switcher." In Hase. IEEE Computer Society, 2000. ISSN: 0-7695-0927-4. DOI: 10.1109/HASE.2000.895456.
|
Amedeo Cesta, Alberto Finzi, Simone Fratini, Andrea Orlandini, and Enrico Tronci. "Merging Planning, Scheduling & Verification – A Preliminary Analysis." In In Proc. of 10th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA)., 2008.
|
Amedeo Cesta, Alberto Finzi, Simone Fratini, Andrea Orlandini, and Enrico Tronci. "Validation and Verification Issues in a Timeline-based Planning System." In In E-Proc. of ICAPS Workshop on Knowledge Engineering for Planning and Scheduling., 2008.
Abstract: One of the key points to take into account to foster effective introduction of AI planning and scheduling systems in real world is to develop end user trust in the related technologies. Automated planning and scheduling systems often brings solutions to the users which are neither “obviousÃ¢â‚¬Âť nor immediately acceptable for them. This is due to the ability of these tools to take into account quite an amount of temporal and causal constraints and to employ resolution processes often designed to optimize the solution with respect to non trivial evaluation functions. To increase technology trust, the study of tools for verifying and validating plans and schedules produced by AI systems might be instrumental. In general, validation and verification techniques represent a needed complementary technology in developing domain independent architectures for automated problem solving. This paper presents a preliminary report of the issues concerned with the use of two software tools for formal verification of finite state systems to the validation of the solutions produced by MrSPOCK, a recent effort for building a timeline based planning tool in an ESA project.
|
Amedeo Cesta, Alberto Finzi, Simone Fratini, Andrea Orlandini, and Enrico Tronci. "Verifying Flexible Timeline-based Plans." In E-Proc. of ICAPS Workshop on Validation and Verification of Planning and Scheduling Systems., 2009.
Abstract: The synthesis of flexible temporal plans has demonstrated wide applications possibilities in heterogeneous domains. We are currently studying the connection between plan generation and execution from the particular perspective of verifying a flexible plan before actual execution. This paper explores how a model-checking verification tool, based on UPPAAL-TIGA, is suitable for verifying flexible temporal plans. We first describe the formal model, the formalism, and the verification method. Furthermore we discuss our own approach and some preliminary empirical results using a real-world case study.
|
Ruggero Lanotte, Andrea Maggiolo-Schettini, Simone Tini, Angelo Troina, and Enrico Tronci. "Automatic Covert Channel Analysis of a Multilevel Secure Component." In Information and Communications Security, 6th International Conference, ICICS 2004, Malaga, Spain, October 27-29, 2004, Proceedings, edited by J. Lopez, S. Qing and E. Okamoto, 249–261. Lecture Notes in Computer Science 3269. Springer, 2004. DOI: 10.1007/b101042.
Abstract: The NRL Pump protocol defines a multilevel secure component whose goal is to minimize leaks of information from high level systems to lower level systems, without degrading average time performances. We define a probabilistic model for the NRL Pump and show how a probabilistic model checker (FHP-mur$\varphi$) can be used to estimate the capacity of a probabilistic covert channel in the NRL Pump. We are able to compute the probability of a security violation as a function of time for various configurations of the system parameters (e.g. buffer sizes, moving average size, etc). Because of the model complexity, our results cannot be obtained using an analytical approach and, because of the low probabilities involved, it can be hard to obtain them using a simulator.
|
Ruggero Lanotte, Andrea Maggiolo-Schettini, Simone Tini, Angelo Troina, and Enrico Tronci. "Automatic Analysis of the NRL Pump." Electr. Notes Theor. Comput. Sci. 99 (2004): 245–266. DOI: 10.1016/j.entcs.2004.02.011.
Abstract: We define a probabilistic model for the NRL Pump and using FHP-mur$\varphi$ show experimentally that there exists a probabilistic covert channel whose capacity depends on various NRL Pump parameters (e.g. buffer size, number of samples in the moving average, etc).
|
Ester Ciancamerla, Michele Minichino, Stefano Serro, and Enrico Tronci. "Automatic Timeliness Verification of a Public Mobile Network." In 22nd International Conference on Computer Safety, Reliability, and Security (SAFECOMP), edited by S. Anderson, M. Felici and B. Littlewood, 35–48. Lecture Notes in Computer Science 2788. Edinburgh, UK: Springer, 2003. ISSN: 978-3-540-20126-7. DOI: 10.1007/978-3-540-39878-3_4.
Abstract: This paper deals with the automatic verification of the timeliness of Public Mobile Network (PMN), consisting of Mobile Nodes (MNs) and Base Stations (BSs). We use the Mur$\varphi$ Model Checker to verify that the waiting access time of each MN, under different PMN configurations and loads, and different inter arrival times of MNs in a BS cell, is always below a preassigned threshold. Our experimental results show that Model Checking can be successfully used to generate worst case scenarios and nicely complements probabilistic methods and simulation which are typically used for performance evaluation.
|
Enrico Tronci, Giuseppe Della Penna, Benedetto Intrigila, and Marisa Venturini Zilli. "A Probabilistic Approach to Automatic Verification of Concurrent Systems." In 8th Asia-Pacific Software Engineering Conference (APSEC), 317–324. Macau, China: IEEE Computer Society, 2001. ISSN: 0-7695-1408-1. DOI: 10.1109/APSEC.2001.991495.
Abstract: The main barrier to automatic verification of concurrent systems is the huge amount of memory required to complete the verification task (state explosion). In this paper we present a probabilistic algorithm for automatic verification via model checking. Our algorithm trades space with time. In particular, when memory is full because of state explosion our algorithm does not give up verification. Instead it just proceeds at a lower speed and its results will only hold with some arbitrarily small error probability. Our preliminary experimental results show that by using our probabilistic algorithm we can typically save more than 30% of RAM with an average time penalty of about 100% w.r.t. a deterministic state space exploration with enough memory to complete the verification task. This is better than giving up the verification task because of lack of memory.
|