Igor Melatti, Robert Palmer, Geoffrey Sawaya, Yu Yang, Robert Mike Kirby, and Ganesh Gopalakrishnan. "Parallel and distributed model checking in Eddy." Int. J. Softw. Tools Technol. Transf. 11, no. 1 (2009): 13–25. Springer-Verlag. ISSN: 1433-2779. DOI: 10.1007/s10009-008-0094-x.
Abstract: Model checking of safety properties can be scaled up by pooling the CPU and memory resources of multiple computers. As compute clusters containing 100s of nodes, with each node realized using multi-core (e.g., 2) CPUs will be widespread, a model checker based on the parallel (shared memory) and distributed (message passing) paradigms will more efficiently use the hardware resources. Such a model checker can be designed by having each node employ two shared memory threads that run on the (typically) two CPUs of a node, with one thread responsible for state generation, and the other for efficient communication, including (1) performing overlapped asynchronous message passing, and (2) aggregating the states to be sent into larger chunks in order to improve communication network utilization. We present the design details of such a novel model checking architecture called Eddy. We describe the design rationale, details of how the threads interact and yield control, exchange messages, as well as detect termination. We have realized an instance of this architecture for the Murphi modeling language. Called Eddy_Murphi, we report its performance over the number of nodes as well as communication parameters such as those controlling state aggregation. Nearly linear reduction of compute time with increasing number of nodes is observed. Our thread task partition is done in such a way that it is modular, easy to port across different modeling languages, and easy to tune across a variety of platforms.
|
Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. "Model Based Synthesis of Control Software from System Level Formal Specifications." ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY 23, no. 1 (2014): Article 6. ACM. ISSN: 1049-331X. DOI: 10.1145/2559934.
|
Giuseppe Della Penna, Benedetto Intrigila, Daniele Magazzeni, Igor Melatti, and Enrico Tronci. "CGMurphi: Automatic synthesis of numerical controllers for nonlinear hybrid systems." European Journal of Control 19, no. 1 (2013): 14–36. Elsevier North-Holland, Inc.. ISSN: 0947-3580. DOI: 10.1016/j.ejcon.2013.02.001.
|
Enrico Tronci. "Equational Programming in Lambda-Calculus via SL-Systems. Part 1." Theoretical Computer Science 160, no. 1&2 (1996): 145–184. DOI: 10.1016/0304-3975(95)00105-0.
|
Enrico Tronci. "Equational Programming in Lambda-Calculus via SL-Systems. Part 2." Theoretical Computer Science 160, no. 1&2 (1996): 185–216. DOI: 10.1016/0304-3975(95)00106-9.
|
T. Mancini. "Now or Never: Negotiating Efficiently with Unknown or Untrusted Counterparts." Fundamenta Informaticae 149, no. 1-2 (2016): 61–100. DOI: 10.3233/FI-2016-1443.
|
T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci. "SyLVaaS: System Level Formal Verification as a Service." Fundamenta Informaticae 149, no. 1-2 (2016): 101–132. DOI: 10.3233/FI-2016-1444.
|
V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci. "Linearising Discrete Time Hybrid Systems." IEEE Transactions on Automatic Control 62, no. 10 (2017): 5357–5364. ISSN: 0018-9286. DOI: 10.1109/TAC.2017.2694559.
Abstract: Model Based Design approaches for embedded systems aim at generating correct-by-construction control software, guaranteeing that the closed loop system (controller and plant) meets given system level formal specifications. This technical note addresses control synthesis for safety and reachability properties of possibly non-linear discrete time hybrid systems. By means of syntactical transformations that require non-linear terms to be Lipschitz continuous functions, we over-approximate non-linear dynamics with a linear system whose controllers are guaranteed to be controllers of the original system. We evaluate performance of our approach on meaningful control synthesis benchmarks, also comparing it to a state-of-the-art tool.
|
Amedeo Cesta, Simone Fratini, Andrea Orlandini, Alberto Finzi, and Enrico Tronci. "Flexible Plan Verification: Feasibility Results." Fundamenta Informaticae 107, no. 2 (2011): 111–137. DOI: 10.3233/FI-2011-397.
|
Benedetto Intrigila, Ivano Salvo, and Stefano Sorgi. "A characterization of weakly Church-Rosser abstract reduction systems that are not Church-Rosser." Information and Computation 171, no. 2 (2001): 137–155. Academic Press, Inc.. ISSN: 0890-5401. DOI: 10.1006/inco.2001.2945.
Abstract: Basic properties of rewriting systems can be stated in the framework of abstract reduction systems (ARS). Properties like confluence (or Church-Rosser, CR) and weak confluence (or weak Church-Rosser, WCR) and their relationships can be studied in this setting: as a matter of fact, well-known counterexamples to the implication WCR CR have been formulated as ARS. In this paper, starting from the observation that such counterexamples are structurally similar, we set out a graph-theoretic characterization of WCR ARS that is not CR in terms of a suitable class of reduction graphs, such that in every WCR not CR ARS, we can embed at least one element of this class. Moreover, we give a tighter characterization for a restricted class of ARS enjoying a suitable regularity condition. Finally, as a consequence of our approach, we prove some interesting results about ARS using the mathematical tools developed. In particular, we prove an extension of the Newman’s lemma and we find out conditions that, once assumed together with WCR property, ensure the unique normal form property. The Appendix treats two interesting examples, both generated by graph-rewriting rules, with specific combinatorial properties.
|