Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. "Model Based Synthesis of Control Software from System Level Formal Specifications." ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY 23, no. 1 (2014): Article 6. ACM. ISSN: 1049-331X. DOI: 10.1145/2559934.
|
Vadim Alimguzhin, Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. "On-the-Fly Control Software Synthesis." In Proceedings of International SPIN Symposium on Model Checking of Software (SPIN 2013), 61–80. Lecture Notes in Computer Science 7976. Springer - Verlag, 2013. ISSN: 0302-9743. DOI: 10.1007/978-3-642-39176-7_5.
|
Vadim Alimguzhin, Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. "A Map-Reduce Parallel Approach to Automatic Synthesis of Control Software." In Proc. of International SPIN Symposium on Model Checking of Software (SPIN 2013), 43–60. Lecture Notes in Computer Science 7976. Springer - Verlag, 2013. ISSN: 0302-9743. DOI: 10.1007/978-3-642-39176-7_4.
|
Toni Mancini, Federico Mari, Annalisa Massini, Igor Melatti, Fabio Merli, and Enrico Tronci. "System Level Formal Verification via Model Checking Driven Simulation." In Proceedings of the 25th International Conference on Computer Aided Verification. July 13-19, 2013, Saint Petersburg, Russia, 296–312. Lecture Notes in Computer Science 8044. Springer - Verlag, 2013. ISSN: 0302-9743. DOI: 10.1007/978-3-642-39799-8_21.
|
Giuseppe Della Penna, Benedetto Intrigila, Daniele Magazzeni, Igor Melatti, and Enrico Tronci. "CGMurphi: Automatic synthesis of numerical controllers for nonlinear hybrid systems." European Journal of Control 19, no. 1 (2013): 14–36. Elsevier North-Holland, Inc.. ISSN: 0947-3580. DOI: 10.1016/j.ejcon.2013.02.001.
|
Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. "Linear Constraints and Guarded Predicates as a Modeling Language for Discrete Time Hybrid Systems." International Journal on Advances in Software vol. 6, nr 1&2 (2013): 155–169. IARIA. ISSN: 1942-2628.
Abstract: Model based design is particularly appealing in
software based control systems (e.g., embedded
software) design, since in such a case system
level specifications are much easier to define
than the control software behavior itself. In
turn, model based design of embedded systems
requires modeling both continuous subsystems
(typically, the plant) as well as discrete
subsystems (the controller). This is typically
done using hybrid systems. Mixed Integer Linear
Programming (MILP) based abstraction techniques
have been successfully applied to automatically
synthesize correct-by-construction control
software for discrete time linear hybrid systems,
where plant dynamics is modeled as a linear
predicate over state, input, and next state
variables. Unfortunately, MILP solvers require
such linear predicates to be conjunctions of
linear constraints, which is not a natural way of
modeling hybrid systems. In this paper we show
that, under the hypothesis that each variable
ranges over a bounded interval, any linear
predicate built upon conjunction and disjunction
of linear constraints can be automatically
translated into an equivalent conjunctive
predicate. Since variable bounds play a key role
in this translation, our algorithm includes a
procedure to compute all implicit variable bounds
of the given linear predicate. Furthermore, we
show that a particular form of linear predicates,
namely guarded predicates, are a natural and
powerful language to succinctly model discrete
time linear hybrid systems dynamics. Finally, we
experimentally show the feasibility of our
approach on an important and challenging case
study taken from the literature, namely the
multi-input Buck DC-DC Converter. As an example,
the guarded predicate that models (with 57
constraints) a 6-inputs Buck DC-DC Converter is
translated in a conjunctive predicate (with 102
linear constraints) in about 40 minutes.
Keywords: Model-based software design; Linear predicates; Hybrid systems
|
Verzino Giovanni, Federico Cavaliere, Federico Mari, Igor Melatti, Giovanni Minei, Ivano Salvo, Yuri Yushtein, and Enrico Tronci. "Model checking driven simulation of sat procedures." In Proceedings of 12th International Conference on Space Operations (SpaceOps 2012)., 2012. DOI: 10.2514/6.2012-1275611.
|
Toni Mancini, Federico Mari, Annalisa Massini, Igor Melatti, and Enrico Tronci. "System Level Formal Verification via Distributed Multi-Core Hardware in the Loop Simulation." In Proc. of the 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing. IEEE Computer Society, 2014. DOI: 10.1109/PDP.2014.32.
|
E. Tronci, T. Mancini, F. Mari, I. Melatti, R. H. Jacobsen, E. Ebeid, S. A. Mikkelsen, M. Prodanovic, J. K. Gruber, and B. Hayes. "SmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Automation." In Proceedings of the Work in Progress Session of SEAA/DSD 2014., 2014.
|
E. Tronci, T. Mancini, I. Salvo, F. Mari, I. Melatti, A. Massini, S. Sinisi, F. Davì, T. Dierkes, R. Ehrig et al. "Patient-Specific Models from Inter-Patient Biological Models and Clinical Records." In Formal Methods in Computer-Aided Design (FMCAD)., 2014. DOI: 10.1109/FMCAD.2014.6987615.
|