|
Toni Mancini, Federico Mari, Annalisa Massini, Igor Melatti, Fabio Merli, and Enrico Tronci. "System Level Formal Verification via Model Checking Driven Simulation." In Proceedings of the 25th International Conference on Computer Aided Verification. July 13-19, 2013, Saint Petersburg, Russia, 296–312. Lecture Notes in Computer Science 8044. Springer - Verlag, 2013. ISSN: 0302-9743. ISBN: 978-3-642-39798-1. DOI: 10.1007/978-3-642-39799-8_21.
|
|
|
Giuseppe Della Penna, Daniele Magazzeni, Alberto Tofani, Benedetto Intrigila, Igor Melatti, and Enrico Tronci. "Automated Generation Of Optimal Controllers Through Model Checking Techniques." In Informatics in Control Automation and Robotics. Selected Papers from ICINCO 2006, 107–119. Springer, 2008. DOI: 10.1007/978-3-540-79142-3_10.
|
|
|
Federico Mari, Igor Melatti, Ivano Salvo, Enrico Tronci, Lorenzo Alvisi, Allen Clement, and Harry Li. "Model Checking Coalition Nash Equilibria in MAD Distributed Systems." In Stabilization, Safety, and Security of Distributed Systems, 11th International Symposium, SSS 2009, Lyon, France, November 3-6, 2009. Proceedings, edited by R. Guerraoui and F. Petit, 531–546. Lecture Notes in Computer Science 5873. Springer, 2009. DOI: 10.1007/978-3-642-05118-0_37.
Abstract: We present two OBDD based model checking algorithms for the verification of Nash equilibria in finite state mechanisms modeling Multiple Administrative Domains (MAD) distributed systems with possibly colluding agents (coalitions) and with possibly faulty or malicious nodes (Byzantine agents). Given a finite state mechanism, a proposed protocol for each agent and the maximum sizes f for Byzantine agents and q for agents collusions, our model checkers return Pass if the proposed protocol is an ε-f-q-Nash equilibrium, i.e. no coalition of size up to q may have an interest greater than ε in deviating from the proposed protocol when up to f Byzantine agents are present, Fail otherwise. We implemented our model checking algorithms within the NuSMV model checker: the first one explicitly checks equilibria for each coalition, while the second represents symbolically all coalitions. We present experimental results showing their effectiveness for moderate size mechanisms. For example, we can verify coalition Nash equilibria for mechanisms which corresponding normal form games would have more than $5 \times 10^21$ entries. Moreover, we compare the two approaches, and the explicit algorithm turns out to outperform the symbolic one. To the best of our knowledge, no model checking algorithm for verification of Nash equilibria of mechanisms with coalitions has been previously published.
|
|
|
Amedeo Cesta, Alberto Finzi, Simone Fratini, Andrea Orlandini, and Enrico Tronci. "Flexible Timeline-Based Plan Verification." In KI 2009: Advances in Artificial Intelligence, 32nd Annual German Conference on AI, Paderborn, Germany, September 15-18, 2009. Proceedings, edited by B. Ã. ¤rbel Mertsching, M. Hund and M. Z. Aziz, 49–56. Lecture Notes in Computer Science 5803. Springer, 2009. ISSN: 978-3-642-04616-2. DOI: 10.1007/978-3-642-04617-9_7.
|
|
|
Edoardo Campagnano, Ester Ciancamerla, Michele Minichino, and Enrico Tronci. "Automatic Analysis of a Safety Critical Tele Control System." In 24th International Conference on: Computer Safety, Reliability, and Security (SAFECOMP), edited by R. Winther, B. A. Gran and G. Dahll, 94–107. Lecture Notes in Computer Science 3688. Fredrikstad, Norway: Springer, 2005. ISSN: 3-540-29200-4. DOI: 10.1007/11563228_8.
Abstract: We show how the Mur$\varphi$ model checker can be used to automatically carry out safety analysis of a quite complex hybrid system tele-controlling vehicles traffic inside a safety critical transport infrastructure such as a long bridge or a tunnel. We present the Mur$\varphi$ model we developed towards this end as well as the experimental results we obtained by running the Mur$\varphi$ verifier on our model. Our experimental results show that the approach presented here can be used to verify safety of critical dimensioning parameters (e.g. bandwidth) of the telecommunication network embedded in a safety critical system.
|
|
|
Ruggero Lanotte, Andrea Maggiolo-Schettini, Simone Tini, Angelo Troina, and Enrico Tronci. "Automatic Covert Channel Analysis of a Multilevel Secure Component." In Information and Communications Security, 6th International Conference, ICICS 2004, Malaga, Spain, October 27-29, 2004, Proceedings, edited by J. Lopez, S. Qing and E. Okamoto, 249–261. Lecture Notes in Computer Science 3269. Springer, 2004. DOI: 10.1007/b101042.
Abstract: The NRL Pump protocol defines a multilevel secure component whose goal is to minimize leaks of information from high level systems to lower level systems, without degrading average time performances. We define a probabilistic model for the NRL Pump and show how a probabilistic model checker (FHP-mur$\varphi$) can be used to estimate the capacity of a probabilistic covert channel in the NRL Pump. We are able to compute the probability of a security violation as a function of time for various configurations of the system parameters (e.g. buffer sizes, moving average size, etc). Because of the model complexity, our results cannot be obtained using an analytical approach and, because of the low probabilities involved, it can be hard to obtain them using a simulator.
|
|
|
Marco Martinelli, Enrico Tronci, Giovanni Dipoppa, and Claudio Balducelli. "Electric Power System Anomaly Detection Using Neural Networks." In 8th International Conference on: Knowledge-Based Intelligent Information and Engineering Systems (KES), edited by M. G. Negoita, R. J. Howlett and L. C. Jain, 1242–1248. Lecture Notes in Computer Science 3213. Wellington, New Zealand: Springer, 2004. ISSN: 3-540-23318-0. DOI: 10.1007/978-3-540-30132-5_168.
Abstract: The aim of this work is to propose an approach to monitor and protect Electric Power System by learning normal system behaviour at substations level, and raising an alarm signal when an abnormal status is detected; the problem is addressed by the use of autoassociative neural networks, reading substation measures. Experimental results show that, through the proposed approach, neural networks can be used to learn parameters underlaying system behaviour, and their output processed to detecting anomalies due to hijacking of measures, changes in the power network topology (i.e. transmission lines breaking) and unexpected power demand trend.
|
|
|
"Charme." In Lecture Notes in Computer Science, edited by D. Geist and E. Tronci. Vol. 2860. Springer, 2003. ISSN: 3-540-20363-X. DOI: 10.1007/b93958.
|
|
|
Ester Ciancamerla, Michele Minichino, Stefano Serro, and Enrico Tronci. "Automatic Timeliness Verification of a Public Mobile Network." In 22nd International Conference on Computer Safety, Reliability, and Security (SAFECOMP), edited by S. Anderson, M. Felici and B. Littlewood, 35–48. Lecture Notes in Computer Science 2788. Edinburgh, UK: Springer, 2003. ISSN: 978-3-540-20126-7. DOI: 10.1007/978-3-540-39878-3_4.
Abstract: This paper deals with the automatic verification of the timeliness of Public Mobile Network (PMN), consisting of Mobile Nodes (MNs) and Base Stations (BSs). We use the Mur$\varphi$ Model Checker to verify that the waiting access time of each MN, under different PMN configurations and loads, and different inter arrival times of MNs in a BS cell, is always below a preassigned threshold. Our experimental results show that Model Checking can be successfully used to generate worst case scenarios and nicely complements probabilistic methods and simulation which are typically used for performance evaluation.
|
|
|
Giuseppe Della Penna, Benedetto Intrigila, Enrico Tronci, and Marisa Venturini Zilli. "Exploiting Transition Locality in the Disk Based Mur$\varphi$ Verifier." In 4th International Conference on Formal Methods in Computer-Aided Design (FMCAD), edited by M. Aagaard and J. W. O'Leary, 202–219. Lecture Notes in Computer Science 2517. Portland, OR, USA: Springer, 2002. ISSN: 3-540-00116-6. DOI: 10.1007/3-540-36126-X_13.
Abstract: The main obstruction to automatic verification of Finite State Systems is the huge amount of memory required to complete the verification task (state explosion). This motivates research on distributed as well as disk based verification algorithms. In this paper we present a disk based Breadth First Explicit State Space Exploration algorithm as well as an implementation of it within the Mur$\varphi$ verifier. Our algorithm exploits transition locality (i.e. the statistical fact that most transitions lead to unvisited states or to recently visited states) to decrease disk read accesses thus reducing the time overhead due to disk usage. A disk based verification algorithm for Mur$\varphi$ has been already proposed in the literature. To measure the time speed up due to locality exploitation we compared our algorithm with such previously proposed algorithm. Our experimental results show that our disk based verification algorithm is typically more than 10 times faster than such previously proposed disk based verification algorithm. To measure the time overhead due to disk usage we compared our algorithm with RAM based verification using the (standard) Mur$\varphi$ verifier with enough memory to complete the verification task. Our experimental results show that even when using 1/10 of the RAM needed to complete verification, our disk based algorithm is only between 1.4 and 5.3 times (3 times on average) slower than (RAM) Mur$\varphi$ with enough RAM memory to complete the verification task at hand. Using our disk based Mur$\varphi$ we were able to complete verification of a protocol with about $10^9$ reachable states. This would require more than 5 gigabytes of RAM using RAM based Mur$\varphi$.
|
|