
Antonio Bucciarelli, and Ivano Salvo. "Totality, Definability and Boolean Circuits." 1443 (1998): 808–819. Springer. DOI: 10.1007/BFb0055104.
Abstract: In the type frame originating from the flat domain of boolean values, we single out elements which are hereditarily total. We show that these elements can be defined, up to total equivalence, by sequential programs. The elements of an equivalence class of the totality equivalence relation (totality class) can be seen as different algorithms for computing a given settheoretic boolean function. We show that the bottom element of a totality class, which is sequential, corresponds to the most eager algorithm, and the top to the laziest one. Finally we suggest a link between size of totality classes and a well known measure of complexity of boolean functions, namely their sensitivity.



Antonio Bucciarelli, Silvia de Lorenzis, Adolfo Piperno, and Ivano Salvo. "Some Computational Properties of Intersection Types (Extended Abstract)." (1999): 109–118. IEEE Computer Society. DOI: 10.1109/LICS.1999.782598.
Abstract: This paper presents a new method for comparing computationproperties of λterms typeable with intersection types with respect to terms typeable with Curry types. In particular, strong normalization and λdefinability are investigated. A translation is introduced from intersection typing derivations to Curry typeable terms; the main feature of the proposed technique is that the translation is preserved by βreduction. This allows to simulate a computation starting from a term typeable in the intersection discipline by means of a computation starting from a simply typeable term. Our approach naturally leads to prove strong normalization in the intersection system by means of purely syntactical techniques. In addition, the presented method enables us to give a proof of a conjecture proposed by Leivant in 1990, namely that all functions uniformly definable using intersection types are already definable using Curry types.
Keywords: lambda calculusCurry types, intersection types, lambdadefinability, lambdaterms, strong normalization



V. Bono, and I. Salvo. "A CuCh Interpretation of an ObjectOriented Language." Electronic Notes in Theoretical Computer Science 50, no. 2 (2001): 159–177. Elsevier. Notes: BOTH 2001, Bohmâ€™s theorem: applications to Computer Science Theory (Satellite Workshop of ICALP 2001). DOI: 10.1016/S15710661(04)001719.
Abstract: CuCh machine extends pure lambdaÃâcalculus with algebraic data types and provides a the possibility of defining functions over the disjoint sum of algebras. We exploit such natural form of overloading to define a functional interpretation of a simple, but significant fragment of a typical objectoriented language.



Franco Barbanera, Mariangiola DezaniCiancaglini, Ivano Salvo, and Vladimiro Sassone. "A Type Inference Algorithm for Secure Ambients." Electronic Notes in Theoretical Computer Science 62 (2002): 83–101. Elsevier. Notes: TOSCA 2001, Theory of Concurrency, Higher Order Languages and Types. DOI: 10.1016/S15710661(04)003214.
Abstract: We consider a type discipline for the Ambient Calculus that associates ambients with security levels and constrains them to be traversed by or opened in ambients of higher security clearance only. We present a bottomup algorithm that, given an untyped process P, computes a minimal set of constraints on security levels such that all actions during runs of P are performed without violating the security level priorities. Such an algorithm appears to be a prerequisite to use type systems to ensure security properties in the web scenario.



Mario Coppo, Mariangiola DezaniCiancaglini, Elio Giovannetti, and Ivano Salvo. "Mobility Types for Mobile Processes in Mobile Ambients." Electr. Notes Theor. Comput. Sci. 78 (2003). DOI: 10.1016/S15710661(04)810119.
Abstract: We present an ambientlike calculus in which the open capability is dropped, and a new form of Ã¢â¬ÅlightweightÃ¢â¬Â process mobility is introduced. The calculus comes equipped with a type system that allows the kind of values exchanged in communications and the access and mobility properties of processes to be controlled. A type inference procedure determines the Ã¢â¬ÅminimalÃ¢â¬Â requirements to accept a system or a component as well typed. This gives a kind of principal typing. As an expressiveness test, we show that some well known calculi of concurrency and mobility can be encoded in our calculus in a natural way.



Benedetto Intrigila, Daniele Magazzeni, Igor Melatti, and Enrico Tronci. "A Model Checking Technique for the Verification of Fuzzy Control Systems." In CIMCA '05: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce Vol1 (CIMCAIAWTIC'06), 536–542. Washington, DC, USA: IEEE Computer Society, 2005. ISSN: 076952504001. DOI: 10.1109/CIMCA.2005.1631319.
Abstract: Fuzzy control is well known as a powerful technique for designing and realizing control systems. However, statistical evidence for their correct behavior may be not enough, even when it is based on a large number of samplings. In order to provide a more systematic verification process, the celltocell mapping technology has been used in a number of cases as a verification tool for fuzzy control systems and, more recently, to assess their optimality and robustness. However, celltocell mapping is typically limited in the number of cells it can explore. To overcome this limitation, in this paper we show how model checking techniques may be instead used to verify the correct behavior of a fuzzy control system. To this end, we use a modified version of theMurphi verifier, which ease the modeling phase by allowing to use finite precision real numbers and external C functions. In this way, also already designed simulators may be used for the verification phase. With respect to the cell mapping technique, our approach appears to be complementary; indeed, it explores a much larger number of states, at the cost of being less informative on the global dynamic of the system.



Francesco Brizzolari, Igor Melatti, Enrico Tronci, and Giuseppe Della Penna. "Disk Based Software Verification via Bounded Model Checking." In APSEC '07: Proceedings of the 14th AsiaPacific Software Engineering Conference, 358–365. Washington, DC, USA: IEEE Computer Society, 2007. ISSN: 0769530575. DOI: 10.1109/APSEC.2007.43.
Abstract: One of the most successful approach to automatic software verification is SAT based bounded model checking (BMC). One of the main factors limiting the size of programs that can be automatically verified via BMC is the huge number of clauses that the backend SAT solver has to process. In fact, because of this, the SAT solver may easily run out of RAM. We present two disk based algorithms that can considerably decrease the number of clauses that a BMC backend SAT solver has to process in RAM. Our experimental results show that using our disk based algorithms we can automatically verify programs that are out of reach for RAM based BMC.



Giuseppe Della Penna, Antinisca Di Marco, Benedetto Intrigila, Igor Melatti, and Alfonso Pierantonio. "Interoperability mapping from XML schemas to ER diagrams." Data Knowl. Eng. 59, no. 1 (2006): 166–188. Elsevier Science Publishers B. V.. ISSN: 0169023x. DOI: 10.1016/j.datak.2005.08.002.
Abstract: The eXtensible Markup Language (XML) is a de facto standard on the Internet and is now being used to exchange a variety of data structures. This leads to the problem of efficiently storing, querying and retrieving a great amount of data contained in XML documents. Unfortunately, XML data often need to coexist with historical data. At present, the best solution for storing XML into preexisting data structures is to extract the information from the XML documents and adapt it to the data structuresÃ¢â¬â¢ logical model (e.g., the relational model of a DBMS). In this paper, we introduce a technique called Xere (XML entityÃârelationship exchange) to assist the integration of XML data with other data sources. To this aim, we present an algorithm that maps XML schemas into entityÃârelationship diagrams, discuss its soundness and completeness and show its implementation in XSLT.



Giuseppe Della Penna, Benedetto Intrigila, Igor Melatti, Enrico Tronci, and Marisa Venturini Zilli. "Finite horizon analysis of Markov Chains with the Mur$\varphi$ verifier." Int. J. Softw. Tools Technol. Transf. 8, no. 4 (2006): 397–409. SpringerVerlag. ISSN: 14332779. DOI: 10.1007/s1000900502167.
Abstract: In this paper we present an explicit diskbased verification algorithm for Probabilistic Systems defining discrete time/finite state Markov Chains. Given a Markov Chain and an integer k (horizon), our algorithm checks whether the probability of reaching an error state in at most k steps is below a given threshold. We present an implementation of our algorithm within a suitable extension of the Mur$\varphi$ verifier. We call the resulting probabilistic model checker FHPMur$\varphi$ (Finite Horizon Probabilistic Mur$\varphi$). We present experimental results comparing FHPMur$\varphi$ with (a finite horizon subset of) PRISM, a stateoftheart symbolic model checker for Markov Chains. Our experimental results show that FHPMur$\varphi$ can handle systems that are out of reach for PRISM, namely those involving arithmetic operations on the state variables (e.g. hybrid systems).



Giuseppe Della Penna, Daniele Magazzeni, Alberto Tofani, Benedetto Intrigila, Igor Melatti, and Enrico Tronci. "Automated Generation of Optimal Controllers through Model Checking Techniques." In IcincoIcso, edited by J. AndradeCetto, J.  L. Ferrier, J. M. C. D. Pereira and J. Filipe, 26–33. INSTICC Press, 2006. ISSN: 9728865597. DOI: 10.1007/9783540791423.
Abstract: We present a methodology for the synthesis of controllers, which exploits (explicit) model checking techniques. That is, we can cope with the systematic exploration of a very large state space. This methodology can be applied to systems where other approaches fail. In particular, we can consider systems with an highly nonlinear dynamics and lacking a uniform mathematical description (model). We can also consider situations where the required control action cannot be specified as a local action, and rather a kind of planning is required. Our methodology individuates first a raw optimal controller, then extends it to obtain a more robust one. A case study is presented which considers the well known trucktrailer obstacle avoidance parking problem, in a parking lot with obstacles on it. The complex nonlinear dynamics of the trucktrailer system, within the presence of obstacles, makes the parking problem extremely hard. We show how, by our methodology, we can obtain optimal controllers with different degrees of robustness.

