I. Melatti, F. Mari, T. Mancini, M. Prodanovic, and E. Tronci. "A Two-Layer Near-Optimal Strategy for Substation Constraint Management via Home Batteries." IEEE Transactions on Industrial Electronics (2021): 1. Notes: To appear. DOI: 10.1109/TIE.2021.3102431.
Abstract: Within electrical distribution networks, substation constraints management requires that aggregated power demand from residential users is kept within suitable bounds. Efficiency of substation constraints management can be measured as the reduction of constraints violations w.r.t. unmanaged demand. Home batteries hold the promise of enabling efficient and user-oblivious substation constraints management. Centralized control of home batteries would achieve optimal efficiency. However, it is hardly acceptable by users, since service providers (e.g., utilities or aggregators) would directly control batteries at user premises. Unfortunately, devising efficient hierarchical control strategies, thus overcoming the above problem, is far from easy. We present a novel two-layer control strategy for home batteries that avoids direct control of home devices by the service provider and at the same time yields near-optimal substation constraints management efficiency. Our simulation results on field data from 62 households in Denmark show that the substation constraints management efficiency achieved with our approach is at least 82% of the one obtained with a theoretical optimal centralized strategy.
|
T. Mancini, I. Melatti, and E. Tronci. "Any-horizon uniform random sampling and enumeration of constrained scenarios for simulation-based formal verification." IEEE Transactions on Software Engineering (2021): 1. ISSN: 1939-3520. Notes: To appear. DOI: 10.1109/TSE.2021.3109842.
Abstract: Model-based approaches to the verification of non-terminating Cyber-Physical Systems (CPSs) usually rely on numerical simulation of the System Under Verification (SUV) model under input scenarios of possibly varying duration, chosen among those satisfying given constraints. Such constraints typically stem from requirements (or assumptions) on the SUV inputs and its operational environment as well as from the enforcement of additional conditions aiming at, e.g., prioritising the (often extremely long) verification activity, by, e.g., focusing on scenarios explicitly exercising selected requirements, or avoiding </i>vacuity</i> in their satisfaction. In this setting, the possibility to efficiently sample at random (with a known distribution, e.g., uniformly) within, or to efficiently enumerate (possibly in a uniformly random order) scenarios among those satisfying all the given constraints is a key enabler for the practical viability of the verification process, e.g., via simulation-based statistical model checking. Unfortunately, in case of non-trivial combinations of constraints, iterative approaches like Markovian random walks in the space of sequences of inputs in general fail in extracting scenarios according to a given distribution (e.g., uniformly), and can be very inefficient to produce at all scenarios that are both legal (with respect to SUV assumptions) and of interest (with respect to the additional constraints). For example, in our case studies, up to 91% of the scenarios generated using such iterative approaches would need to be neglected. In this article, we show how, given a set of constraints on the input scenarios succinctly defined by multiple finite memory monitors, a data structure (scenario generator) can be synthesised, from which any-horizon scenarios satisfying the input constraints can be efficiently extracted by (possibly uniform) random sampling or (randomised) enumeration. Our approach enables seamless support to virtually all simulation-based approaches to CPS verification, ranging from simple random testing to statistical model checking and formal (i.e., exhaustive) verification, when a suitable bound on the horizon or an iterative horizon enlargement strategy is defined, as in the spirit of bounded model checking.
|
Giuseppe Della Penna, Alberto Tofani, Marcello Pecorari, Orazio Raparelli, Benedetto Intrigila, Igor Melatti, and Enrico Tronci. "A Case Study on Automated Generation of Integration Tests." In Fdl, 278–284. Ecsi, 2006. ISSN: 978-3-00-019710-9.
|
Novella Bartolini, and Enrico Tronci. "On Optimizing Service Availability of an Internet Based Architecture for Infrastructure Protection." In Cnip., 2006.
|
Michele Cecconi, and Enrico Tronci. "Requirements Formalization and Validation for a Telecommunication Equipment Protection Switcher." In Hase. IEEE Computer Society, 2000. ISSN: 0-7695-0927-4. DOI: 10.1109/HASE.2000.895456.
|
Amedeo Cesta, Alberto Finzi, Simone Fratini, Andrea Orlandini, and Enrico Tronci. "Merging Planning, Scheduling & Verification – A Preliminary Analysis." In In Proc. of 10th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA)., 2008.
|
Amedeo Cesta, Alberto Finzi, Simone Fratini, Andrea Orlandini, and Enrico Tronci. "Validation and Verification Issues in a Timeline-based Planning System." In In E-Proc. of ICAPS Workshop on Knowledge Engineering for Planning and Scheduling., 2008.
Abstract: One of the key points to take into account to foster effective introduction of AI planning and scheduling systems in real world is to develop end user trust in the related technologies. Automated planning and scheduling systems often brings solutions to the users which are neither “obviousÃ¢â‚¬Âť nor immediately acceptable for them. This is due to the ability of these tools to take into account quite an amount of temporal and causal constraints and to employ resolution processes often designed to optimize the solution with respect to non trivial evaluation functions. To increase technology trust, the study of tools for verifying and validating plans and schedules produced by AI systems might be instrumental. In general, validation and verification techniques represent a needed complementary technology in developing domain independent architectures for automated problem solving. This paper presents a preliminary report of the issues concerned with the use of two software tools for formal verification of finite state systems to the validation of the solutions produced by MrSPOCK, a recent effort for building a timeline based planning tool in an ESA project.
|
Federico Cavaliere, Federico Mari, Igor Melatti, Giovanni Minei, Ivano Salvo, Enrico Tronci, Giovanni Verzino, and Yuri Yushtein. "Model Checking Satellite Operational Procedures." In DAta Systems In Aerospace (DASIA), Org. EuroSpace, Canadian Space Agency, CNES, ESA, EUMETSAT. San Anton, Malta, EuroSpace., 2011.
Abstract: We present a model checking approach for the automatic verification of satellite operational procedures (OPs). Building a model for a complex system as a satellite is a hard task. We overcome this obstruction by using a suitable simulator (SIMSAT) for the satellite. Our approach aims at improving OP quality assurance by automatic exhaustive exploration of all possible simulation scenarios. Moreover, our solution decreases OP verification costs by using a model checker (CMurphi) to automatically drive the simulator. We model OPs as user-executed programs observing the simulator telemetries and sending telecommands to the simulator. In order to assess feasibility of our approach we present experimental results on a simple meaningful scenario. Our results show that we can save up to 90% of verification time.
|
Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. "From Boolean Relations to Control Software." In Proceedings of ICSEA 2011, The Sixth International Conference on Software Engineering Advances, 528–533. ThinkMind, 2011. ISSN: 978-1-61208-165-6. Notes: Best Paper Award.
Abstract: Many software as well digital hardware automatic synthesis methods define the set of implementations meeting the given system specifications with a boolean relation K. In such a context a fundamental step in the software (hardware) synthesis process is finding effective solutions to the functional equation defined by K. This entails finding a (set of) boolean function(s) F (typically represented using OBDDs, Ordered Binary Decision Diagrams) such that: 1) for all x for which K is satisfiable, K(x, F(x)) = 1 holds; 2) the implementation of F is efficient with respect to given implementation parameters such as code size or execution time. While this problem has been widely studied in digital hardware synthesis, little has been done in a software synthesis context. Unfortunately the approaches developed for hardware synthesis cannot be directly used in a software context. This motivates investigation of effective methods to solve the above problem when F has to be implemented with software. In this paper we present an algorithm that, from an OBDD representation for K, generates a C code implementation for F that has the same size as the OBDD for F and a WCET (Worst Case Execution Time) linear in nr, being n = |x| the number of input arguments for functions in F and r the number of functions in F.
|
Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. "Synthesis of Quantized Feedback Control Software for Discrete Time Linear Hybrid Systems." In Computer Aided Verification, edited by T. Touili, B. Cook and P. Jackson, 180–195. Lecture Notes in Computer Science 6174. Springer Berlin / Heidelberg, 2010. DOI: 10.1007/978-3-642-14295-6_20.
Abstract: We present an algorithm that given a Discrete Time Linear Hybrid System returns a correct-by-construction software implementation K for a (near time optimal) robust quantized feedback controller for along with the set of states on which K is guaranteed to work correctly (controllable region). Furthermore, K has a Worst Case Execution Time linear in the number of bits of the quantization schema.
|