|
S. Sinisi, V. Alimguzhin, T. Mancini, and E. Tronci. "Reconciling interoperability with efficient Verification and Validation within open source simulation environments." Simulation Modelling Practice and Theory (2021): 102277. ISSN: 1569-190x. DOI: 10.1016/j.simpat.2021.102277.
Abstract: A Cyber-Physical System (CPS) comprises physical as well as software subsystems. Simulation-based approaches are typically used to support design and Verification and Validation (V&V) of CPSs in several domains such as: aerospace, defence, automotive, smart grid and healthcare. Accordingly, many simulation-based tools are available to support CPS design. This, on one side, enables designers to choose the toolchain that best suits their needs, on the other side poses huge interoperability challenges when one needs to simulate CPSs whose subsystems have been designed and modelled using different toolchains. To overcome such an interoperability problem, in 2010 the Functional Mock-up Interface (FMI) has been proposed as an open standard to support both Model Exchange (ME) and Co-Simulation (CS) of simulation models created with different toolchains. FMI has been adopted by several modelling and simulation environments. Models adhering to such a standard are called Functional Mock-up Units (FMUs). Indeed FMUs play an essential role in defining complex CPSs through, e.g., the System Structure and Parametrization (SSP) standard. Simulation-based V&V of CPSs typically requires exploring different simulation scenarios (i.e., exogenous input sequences to the CPS under design). Many such scenarios have a shared prefix. Accordingly, to avoid simulating many times such shared prefixes, the simulator state at the end of a shared prefix is saved and then restored and used as a start state for the simulation of the next scenario. In this context, an important FMI feature is the capability to save and restore the internal FMU state on demand. This is crucial to increase efficiency of simulation-based V&V. Unfortunately, the implementation of this feature is not mandatory and it is available only within some commercial software. As a result, the interoperability enabled by the FMI standard cannot be fully exploited for V&V when using open-source simulation environments. This motivates developing such a feature for open-source CPS simulation environments. Accordingly, in this paper, we focus on JModelica, an open-source modelling and simulation environment for CPSs based on an open standard modelling language, namely Modelica. We describe how we have endowed JModelica with our open-source implementation of the FMI 2.0 functions needed to save and restore internal states of FMUs for ME. Furthermore, we present experimental results evaluating, through 934 benchmark models, correctness and efficiency of our extended JModelica. Our experimental results show that simulation-based V&V is, on average, 22 times faster with our get/set functionality than without it.
Keywords: Simulation, Verification and Validation, Interoperability, FMI/FMU, Model Exchange, Cyber-Physical Systems
|
|
|
B. Leeners, T. Krueger, K. Geraedts, E. Tronci, T. Mancini, F. Ille, M. Egli, S. Roeblitz, D. Wunder, L. Saleh et al. "Cognitive function in association with high estradiol levels resulting from fertility treatment." Hormones and Behavior 130 (2021): 104951. ISSN: 0018-506x. DOI: 10.1016/j.yhbeh.2021.104951.
Abstract: The putative association between hormones and cognitive performance is controversial. While there is evidence that estradiol plays a neuroprotective role, hormone treatment has not been shown to improve cognitive performance. Current research is flawed by the evaluation of combined hormonal effects throughout the menstrual cycle or in the menopausal transition. The stimulation phase of a fertility treatment offers a unique model to study the effect of estradiol on cognitive function. This quasi-experimental observational study is based on data from 44 women receiving IVF in Zurich, Switzerland. We assessed visuospatial working memory, attention, cognitive bias, and hormone levels at the beginning and at the end of the stimulation phase of ovarian superstimulation as part of a fertility treatment. In addition to inter-individual differences, we examined intra-individual change over time (within-subject effects). The substantial increases in estradiol levels resulting from fertility treatment did not relate to any considerable change in cognitive functioning. As the tests applied represent a broad variety of cognitive functions on different levels of complexity and with various brain regions involved, we can conclude that estradiol does not show a significant short-term effect on cognitive function.
Keywords: Cognition, Estrogen, Estradiol, Fertility treatment, Attention, Cognitive bias
|
|
|
L. Tortora, G. Meynen, J. Bijlsma, E. Tronci, and S. Ferracuti. "Neuroprediction and A.I. in Forensic Psychiatry and Criminal Justice: A Neurolaw Perspective." Frontiers in Psychology 11 (2020): 220. ISSN: 1664-1078. DOI: 10.3389/fpsyg.2020.00220.
Abstract: Advances in the use of neuroimaging in combination with A.I., and specifically the use of machine learning techniques, have led to the development of brain-reading technologies which, in the nearby future, could have many applications, such as lie detection, neuromarketing or brain-computer interfaces. Some of these could, in principle, also be used in forensic psychiatry. The application of these methods in forensic psychiatry could, for instance, be helpful to increase the accuracy of risk assessment and to identify possible interventions. This technique could be referred to as ‘A.I. neuroprediction,’ and involves identifying potential neurocognitive markers for the prediction of recidivism. However, the future implications of this technique and the role of neuroscience and A.I. in violence risk assessment remain to be established. In this paper, we review and analyze the literature concerning the use of brain-reading A.I. for neuroprediction of violence and rearrest to identify possibilities and challenges in the future use of these techniques in the fields of forensic psychiatry and criminal justice, considering legal implications and ethical issues. The analysis suggests that additional research is required on A.I. neuroprediction techniques, and there is still a great need to understand how they can be implemented in risk assessment in the field of forensic psychiatry. Besides the alluring potential of A.I. neuroprediction, we argue that its use in criminal justice and forensic psychiatry should be subjected to thorough harms/benefits analyses not only when these technologies will be fully available, but also while they are being researched and developed.
|
|
|
B. Leeners, T. H. C. Krueger, K. Geraedts, E. Tronci, T. Mancini, M. Egli, S. Roeblitz, L. Saleh, K. Spanaus, C. Schippert et al. "Associations Between Natural Physiological and Supraphysiological Estradiol Levels and Stress Perception." Frontiers in Psychology 10 (2019): 1296. ISSN: 1664-1078. DOI: 10.3389/fpsyg.2019.01296.
Abstract: Stress is a risk factor for impaired general, mental and reproductive health. The role of physiological and supraphysiological estradiol concentrations in stress perception and stress processing is less well understood. We therefore, conducted a prospective observational study to investigate the association between estradiol, stress perception and stress-related cognitive performance within serial measurements either during the natural menstrual cycle or during fertility treatment, where estradiol levels are strongly above the physiological level of a natural cycle and consequently, represent a good model to study dose-dependent effects of estradiol. Data from 44 women receiving in vitro fertilization at the Department of Reproductive Endocrinology in Zurich, Switzerland was compared to data from 88 women with measurements during their natural menstrual cycle. The german version of the Perceived Stress Questionnaire (PSQ) and the Cognitive Bias Test (CBT), in which cognitive performance is tested under time stress were used to evaluate subjective and functional aspects of stress. Estradiol levels were investigated at four different time points during the menstrual cycle and at two different time points during a fertility treatment. Cycle phase were associated with PSQ worry and cognitive bias in normally cycling women, but different phases of fertility treatment were not associated with subjectively perceived stress and stress-related cognitive bias. PSQ lack of joy and PSQ demands related to CBT in women receiving fertility treatment but not in women with a normal menstrual cycle. Only strong changes of the estradiol level during fertility treatment were weakly associated with CBT, but not with subjectively experienced stress. Our research emphasises the multidimensional character of stress and the necessity to adjust stress research to the complex nature of stress perception and processing. Infertility is associated with an increased psychological burden in patients. However, not all phases of the process to overcome infertility do significantly increase patient stress levels. Also, research on the psychological burden of infertility should consider that stress may vary during the different phases of fertility treatment.
|
|
|
S. Fischer, R. Ehrig, S. Schaefer, E. Tronci, T. Mancini, M. Egli, F. Ille, T. H. C. Krueger, B. Leeners, and S. Roeblitz. "Mathematical Modeling and Simulation Provides Evidence for New Strategies of Ovarian Stimulation." Frontiers in Endocrinology 12 (2021): 117. ISSN: 1664-2392. DOI: 10.3389/fendo.2021.613048.
Abstract: New approaches to ovarian stimulation protocols, such as luteal start, random start or double stimulation, allow for flexibility in ovarian stimulation at different phases of the menstrual cycle. It has been proposed that the success of these methods is based on the continuous growth of multiple cohorts (“waves”) of follicles throughout the menstrual cycle which leads to the availability of ovarian follicles for ovarian controlled stimulation at several time points. Though several preliminary studies have been published, their scientific evidence has not been considered as being strong enough to integrate these results into routine clinical practice. This work aims at adding further scientific evidence about the efficiency of variable-start protocols and underpinning the theory of follicular waves by using mathematical modeling and numerical simulations. For this purpose, we have modified and coupled two previously published models, one describing the time course of hormones and one describing competitive follicular growth in a normal menstrual cycle. The coupled model is used to test ovarian stimulation protocols in silico. Simulation results show the occurrence of follicles in a wave-like manner during a normal menstrual cycle and qualitatively predict the outcome of ovarian stimulation initiated at different time points of the menstrual cycle.
|
|
|
F. Maggioli, T. Mancini, and E. Tronci. "SBML2Modelica: Integrating biochemical models within open-standard simulation ecosystems." Bioinformatics 36, no. 7 (2019): 2165–2172. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btz860.
Abstract: SBML is the most widespread language for the definition of biochemical models. Although dozens of SBML simulators are available, there is a general lack of support to the integration of SBML models within open-standard general-purpose simulation ecosystems. This hinders co-simulation and integration of SBML models within larger model networks, in order to, e.g., enable in-silico clinical trials of drugs, pharmacological protocols, or engineering artefacts such as biomedical devices against Virtual Physiological Human models.Modelica is one of the most popular existing open-standard general-purpose simulation languages, supported by many simulators. Modelica models are especially suited for the definition of complex networks of heterogeneous models from virtually all application domains. Models written in Modelica (and in 100+ other languages) can be readily exported into black-box Functional Mock-Up Units (FMUs), and seamlessly co-simulated and integrated into larger model networks within open-standard language-independent simulation ecosystems.In order to enable SBML model integration within heterogeneous model networks, we present SBML2Modelica, a software system translating SBML models into well-structured, user-intelligible, easily modifiable Modelica models. SBML2Modelica is SBML Level 3 Version 2 -compliant and succeeds on 96.47% of the SBML Test Suite Core (with a few rare, intricate, and easily avoidable combinations of constructs unsupported and cleanly signalled to the user). Our experimental campaign on 613 models from the BioModels database (with up to 5438 variables) shows that the major open-source (general-purpose) Modelica and FMU simulators achieve performance comparable to state-of-the-art specialised SBML simulators.SBML2Modelica is written in Java and is freely available for non-commercial use at https://bitbucket.org/mclab/sbml2modelica
|
|
|
S. Sinisi, V. Alimguzhin, T. Mancini, E. Tronci, and B. Leeners. "Complete populations of virtual patients for in silico clinical trials." Bioinformatics (2021): 1–8. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btaa1026.
Abstract: Model-based approaches to safety and efficacy assessment of pharmacological drugs, treatment strategies, or medical devices (In Silico Clinical Trial, ISCT) aim to decrease time and cost for the needed experimentations, reduce animal and human testing, and enable precision medicine. Unfortunately, in presence of non-identifiable models (e.g., reaction networks), parameter estimation is not enough to generate complete populations of Virtual Patient (VPs), i.e., populations guaranteed to show the entire spectrum of model behaviours (phenotypes), thus ensuring representativeness of the trial.We present methods and software based on global search driven by statistical model checking that, starting from a (non-identifiable) quantitative model of the human physiology (plus drugs PK/PD) and suitable biological and medical knowledge elicited from experts, compute a population of VPs whose behaviours are representative of the whole spectrum of phenotypes entailed by the model (completeness) and pairwise distinguishable according to user-provided criteria. This enables full granularity control on the size of the population to employ in an ISCT, guaranteeing representativeness while avoiding over-representation of behaviours.We proved the effectiveness of our algorithm on a non-identifiable ODE-based model of the female Hypothalamic-Pituitary-Gonadal axis, by generating a population of 4 830 264 VPs stratified into 7 levels (at different granularity of behaviours), and assessed its representativeness against 86 retrospective health records from Pfizer, Hannover Medical School and University Hospital of Lausanne. The datasets are respectively covered by our VPs within Average Normalised Mean Absolute Error of 15%, 20%, and 35% (90% of the latter dataset is covered within 20% error).
|
|
|
T. Mancini, F. Mari, I. Melatti, I. Salvo, and E. Tronci. "An Efficient Algorithm for Network Vulnerability Analysis Under Malicious Attacks." In Foundations of Intelligent Systems – 24th International Symposium, ISMIS 2018, Limassol, Cyprus, October 29-31, 2018, Proceedings, 302–312., 2018. Notes: Best Paper. DOI: 10.1007/978-3-030-01851-1_29.
|
|
|
R. Ehrig, T. Dierkes, S. Schaefer, S. Roeblitz, E. Tronci, T. Mancini, I. Salvo, V. Alimguzhin, F. Mari, I. Melatti et al. "An integrative approach for model driven computation of treatments in reproductive medicine." In Proceedings of the 15th International Symposium on Mathematical and Computational Biology (BIOMAT 2015), Rorkee, India., 2015. DOI: 10.1142/9789813141919_0005.
|
|
|
Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. "Synthesizing Control Software from Boolean Relations." International Journal on Advances in Software vol. 5, nr 3&4 (2012): 212–223. IARIA. ISSN: 1942-2628.
Abstract: Many software as well digital hardware automatic
synthesis methods define the set of
implementations meeting the given system
specifications with a boolean relation K. In
such a context a fundamental step in the software
(hardware) synthesis process is finding effective
solutions to the functional equation defined by
K. This entails finding a (set of) boolean
function(s) F (typically represented using
OBDDs, Ordered Binary Decision Diagrams)
such that: 1) for all x for which K is
satisfiable, K(x, F(x)) = 1 holds; 2) the
implementation of F is efficient with respect
to given implementation parameters such as code
size or execution time. While this problem has
been widely studied in digital hardware synthesis,
little has been done in a software synthesis
context. Unfortunately, the approaches developed
for hardware synthesis cannot be directly used in
a software context. This motivates investigation
of effective methods to solve the above problem
when F has to be implemented with software. In
this paper, we present an algorithm that, from an
OBDD representation for K, generates a C code
implementation for F that has the same size as
the OBDD for F and a worst case execution time
linear in nr, being n = |x| the number of
input arguments for functions in F and r the
number of functions in F. Moreover, a formal
proof of the proposed algorithm correctness is
also shown. Finally, we present experimental
results showing effectiveness of the proposed
algorithm.
Keywords: Control Software Synthesis; Embedded Systems; Model Checking
|
|