|
Andrea Bobbio, Ester Ciancamerla, Michele Minichino, and Enrico Tronci. "Functional analysis of a telecontrol system and stochastic measures of its GSM/GPRS connections." Archives of Transport – International Journal of Transport Problems 17, no. 3-4 (2005).
|
|
|
Corrado Böhm, Adolfo Piperno, and Enrico Tronci. "Solving Equations in λ-calculus." In Proc. of: Logic Colloquium 88. Padova - Italy, 1989.
|
|
|
Corrado Böhm, and Enrico Tronci. "X-Separability and Left-Invertibility in lambda-calculus." In Symposium on Logic in Computer Science (LICS), 320–328. Ithaca, New York, USA: IEEE Computer Society, 1987.
|
|
|
Corrado Böhm, and Enrico Tronci. "X-separability and left-invertibility in the λ-calculus (extended abstract, invited paper)." In Proceedings of: Temi e prospettive della Logica e della Filosofia della Scienza contemporanea. Cesena - Italy, 1987.
|
|
|
Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. "Linear Constraints as a Modeling Language for Discrete Time Hybrid Systems." In Proceedings of ICSEA 2012, The Seventh International Conference on Software Engineering Advances, 664–671. ThinkMind, 2012.
|
|
|
Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. "Control Software Visualization." In Proceedings of INFOCOMP 2012, The Second International Conference on Advanced Communications and Computation, 15–20. ThinkMind, 2012. ISSN: 978-1-61208-226-4.
|
|
|
Ed Kuijpers, Luigi Carotenuto, Jean- Cristophe Malapert, Daniela Markov-Vetter, Igor Melatti, Andrea Orlandini, and Ranni Pinchuk. "Collaboration on ISS Experiment Data and Knowledge Representation." In Proc. of IAC 2012. Vol. D.5.11., 2012.
|
|
|
E. Tronci, T. Mancini, F. Mari, I. Melatti, R. H. Jacobsen, E. Ebeid, S. A. Mikkelsen, M. Prodanovic, J. K. Gruber, and B. Hayes. "SmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Automation." In Proceedings of the Work in Progress Session of SEAA/DSD 2014., 2014. ISBN: 978-3-902457-40-0.
|
|
|
Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. Quantized Feedback Control Software Synthesis from System Level Formal Specifications for Buck DC/DC Converters. Vol. abs/1105.5640. CoRR, Technical Report, 2011. http://arxiv.org/abs/1105.5640 (accessed November 12, 2024).
Abstract: Many Embedded Systems are indeed Software Based Control Systems (SBCSs), that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of SBCS control software. In previous works we presented an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System, DTLHS) of the controlled system (plant), implementation specifications (that is, number of bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and liveness requirements for the closed loop system) returns correct-by-construction control software that has a Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications. In this technical report we present full experimental results on using it to synthesize control software for two versions of buck DC-DC converters (single-input and multi-input), a widely used mixed-mode analog circuit.
|
|
|
Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci. From Boolean Functional Equations to Control Software. Vol. abs/1106.0468. CoRR, Technical Report, 2011. http://arxiv.org/abs/1106.0468 (accessed November 12, 2024).
Abstract: Many software as well digital hardware automatic synthesis methods define the set of implementations meeting the given system specifications with a boolean relation K. In such a context a fundamental step in the software (hardware) synthesis process is finding effective solutions to the functional equation defined by K. This entails finding a (set of) boolean function(s) F (typically represented using OBDDs, Ordered Binary Decision Diagrams) such that: 1) for all x for which K is satisfiable, K(x, F(x)) = 1 holds; 2) the implementation of F is efficient with respect to given implementation parameters such as code size or execution time. While this problem has been widely studied in digital hardware synthesis, little has been done in a software synthesis context. Unfortunately the approaches developed for hardware synthesis cannot be directly used in a software context. This motivates investigation of effective methods to solve the above problem when F has to be implemented with software. In this paper we present an algorithm that, from an OBDD representation for K, generates a C code implementation for F that has the same size as the OBDD for F and a WCET (Worst Case Execution Time) at most O(nr), being n = |x| the number of arguments of functions in F and r the number of functions in F.
|
|