|
T. Mancini, F. Mari, A. Massini, I. Melatti, I. Salvo, and E. Tronci. "On minimising the maximum expected verification time." Information Processing Letters (2017). DOI: 10.1016/j.ipl.2017.02.001.
|
|
|
R. Ehrig, T. Dierkes, S. Schaefer, S. Roeblitz, E. Tronci, T. Mancini, I. Salvo, V. Alimguzhin, F. Mari, I. Melatti et al. "An integrative approach for model driven computation of treatments in reproductive medicine." In Proceedings of the 15th International Symposium on Mathematical and Computational Biology (BIOMAT 2015), Rorkee, India., 2015. DOI: 10.1142/9789813141919_0005.
|
|
|
Y. Driouich, M. Parente, and E. Tronci. "Modeling cyber-physical systems for automatic verification." In 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD 2017), 1–4., 2017. DOI: 10.1109/SMACD.2017.7981621.
Keywords: cyber-physical systems;formal verification;maximum power point trackers;power engineering computing;Modelica;automatic verification;complex power electronics systems;cyber-physical systems modeling;distributed maximum power point tracking system;open standard modeling language;Computational modeling;Control systems;Integrated circuit modeling;Mathematical model;Maximum power point trackers;Object oriented modeling;Radiation effects;Automatic Formal Verification;Cyber-Physical Systems;DMPPT;Modeling;Photovoltaic systems;Simulation;System Analysis and Design
|
|
|
Y. Driouich, M. Parente, and E. Tronci. "A methodology for a complete simulation of Cyber-Physical Energy Systems." In EESMS 2018 – Environmental, Energy, and Structural Monitoring Systems, Proceedings, 1–5., 2018. DOI: 10.1109/EESMS.2018.8405826.
|
|
|
T. Mancini, F. Mari, I. Melatti, I. Salvo, E. Tronci, J. Gruber, B. Hayes, M. Prodanovic, and L. Elmegaard. "Parallel Statistical Model Checking for Safety Verification in Smart Grids." In 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), 1–6., 2018. DOI: 10.1109/SmartGridComm.2018.8587416.
|
|
|
Y. Driouich, M. Parente, and E. Tronci. "Model Checking Cyber-Physical Energy Systems." In Proceedings of 2017 International Renewable and Sustainable Energy Conference, IRSEC 2017. Institute of Electrical and Electronics Engineers Inc., 2018. DOI: 10.1109/IRSEC.2017.8477334.
|
|
|
T. Mancini, E. Tronci, A. Scialanca, F. Lanciotti, A. Finzi, R. Guarneri, and S. Di Pompeo. "Optimal Fault-Tolerant Placement of Relay Nodes in a Mission Critical Wireless Network." In 25th RCRA International Workshop on “Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion” (RCRA 2018)., 2018. DOI: 10.29007/grw9.
|
|
|
T. Mancini, F. Mari, A. Massini, I. Melatti, I. Salvo, S. Sinisi, E. Tronci, R. Ehrig, S. Röblitz, and B. Leeners. "Computing Personalised Treatments through In Silico Clinical Trials. A Case Study on Downregulation in Assisted Reproduction." In 25th RCRA International Workshop on “Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion” (RCRA 2018)., 2018. DOI: 10.29007/g864.
|
|
|
S. Sinisi, V. Alimguzhin, T. Mancini, E. Tronci, and B. Leeners. "Complete populations of virtual patients for in silico clinical trials." Bioinformatics (2021): 1–8. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btaa1026.
Abstract: Model-based approaches to safety and efficacy assessment of pharmacological drugs, treatment strategies, or medical devices (In Silico Clinical Trial, ISCT) aim to decrease time and cost for the needed experimentations, reduce animal and human testing, and enable precision medicine. Unfortunately, in presence of non-identifiable models (e.g., reaction networks), parameter estimation is not enough to generate complete populations of Virtual Patient (VPs), i.e., populations guaranteed to show the entire spectrum of model behaviours (phenotypes), thus ensuring representativeness of the trial.We present methods and software based on global search driven by statistical model checking that, starting from a (non-identifiable) quantitative model of the human physiology (plus drugs PK/PD) and suitable biological and medical knowledge elicited from experts, compute a population of VPs whose behaviours are representative of the whole spectrum of phenotypes entailed by the model (completeness) and pairwise distinguishable according to user-provided criteria. This enables full granularity control on the size of the population to employ in an ISCT, guaranteeing representativeness while avoiding over-representation of behaviours.We proved the effectiveness of our algorithm on a non-identifiable ODE-based model of the female Hypothalamic-Pituitary-Gonadal axis, by generating a population of 4 830 264 VPs stratified into 7 levels (at different granularity of behaviours), and assessed its representativeness against 86 retrospective health records from Pfizer, Hannover Medical School and University Hospital of Lausanne. The datasets are respectively covered by our VPs within Average Normalised Mean Absolute Error of 15%, 20%, and 35% (90% of the latter dataset is covered within 20% error).
|
|
|
T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci. "On Checking Equivalence of Simulation Scripts." Journal of Logical and Algebraic Methods in Programming (2021): 100640. ISSN: 2352-2208. DOI: 10.1016/j.jlamp.2021.100640.
Abstract: To support Model Based Design of Cyber-Physical Systems (CPSs) many simulation based approaches to System Level Formal Verification (SLFV) have been devised. Basically, these are Bounded Model Checking approaches (since simulation horizon is of course bounded) relying on simulators to compute the system dynamics and thereby verify the given system properties. The main obstacle to simulation based SLFV is the large number of simulation scenarios to be considered and thus the huge amount of simulation time needed to complete the verification task. To save on computation time, simulation based SLFV approaches exploit the capability of simulators to save and restore simulation states. Essentially, such a time saving is obtained by optimising the simulation script defining the simulation activity needed to carry out the verification task. Although such approaches aim to (bounded) formal verification, as a matter of fact, the proof of correctness of the methods to optimise simulation scripts basically relies on an intuitive semantics for simulation scripting languages. This hampers the possibility of formally showing that the optimisations introduced to speed up the simulation activity do not actually omit checking of relevant behaviours for the system under verification. The aim of this paper is to fill the above gap by presenting an operational semantics for simulation scripting languages and by proving soundness and completeness properties for it. This, in turn, enables formal proofs of equivalence between unoptimised and optimised simulation scripts.
Keywords: Formal verification, Simulation based formal verification, Formal Verification of cyber-physical systems, System-level formal verification
|
|