toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Sinisi, S.; Alimguzhin, V.; Mancini, T.; Tronci, E.; Leeners, B. pdf  url
doi  openurl
  Title Complete populations of virtual patients for in silico clinical trials Type Journal Article
  Year 2021 Publication Bioinformatics Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords  
  Abstract Model-based approaches to safety and efficacy assessment of pharmacological drugs, treatment strategies, or medical devices (In Silico Clinical Trial, ISCT) aim to decrease time and cost for the needed experimentations, reduce animal and human testing, and enable precision medicine. Unfortunately, in presence of non-identifiable models (e.g., reaction networks), parameter estimation is not enough to generate complete populations of Virtual Patient (VPs), i.e., populations guaranteed to show the entire spectrum of model behaviours (phenotypes), thus ensuring representativeness of the trial.We present methods and software based on global search driven by statistical model checking that, starting from a (non-identifiable) quantitative model of the human physiology (plus drugs PK/PD) and suitable biological and medical knowledge elicited from experts, compute a population of VPs whose behaviours are representative of the whole spectrum of phenotypes entailed by the model (completeness) and pairwise distinguishable according to user-provided criteria. This enables full granularity control on the size of the population to employ in an ISCT, guaranteeing representativeness while avoiding over-representation of behaviours.We proved the effectiveness of our algorithm on a non-identifiable ODE-based model of the female Hypothalamic-Pituitary-Gonadal axis, by generating a population of 4 830 264 VPs stratified into 7 levels (at different granularity of behaviours), and assessed its representativeness against 86 retrospective health records from Pfizer, Hannover Medical School and University Hospital of Lausanne. The datasets are respectively covered by our VPs within Average Normalised Mean Absolute Error of 15%, 20%, and 35% (90% of the latter dataset is covered within 20% error).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-4803 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ ref10.1093/bioinformatics/btaa1026 Serial 182  
Permanent link to this record
 

 
Author (down) Sinisi, S.; Alimguzhin, V.; Mancini, T.; Tronci, E. pdf  url
doi  openurl
  Title Reconciling interoperability with efficient Verification and Validation within open source simulation environments Type Journal Article
  Year 2021 Publication Simulation Modelling Practice and Theory Abbreviated Journal  
  Volume Issue Pages 102277  
  Keywords Simulation, Verification and Validation, Interoperability, FMI/FMU, Model Exchange, Cyber-Physical Systems  
  Abstract A Cyber-Physical System (CPS) comprises physical as well as software subsystems. Simulation-based approaches are typically used to support design and Verification and Validation (V&V) of CPSs in several domains such as: aerospace, defence, automotive, smart grid and healthcare. Accordingly, many simulation-based tools are available to support CPS design. This, on one side, enables designers to choose the toolchain that best suits their needs, on the other side poses huge interoperability challenges when one needs to simulate CPSs whose subsystems have been designed and modelled using different toolchains. To overcome such an interoperability problem, in 2010 the Functional Mock-up Interface (FMI) has been proposed as an open standard to support both Model Exchange (ME) and Co-Simulation (CS) of simulation models created with different toolchains. FMI has been adopted by several modelling and simulation environments. Models adhering to such a standard are called Functional Mock-up Units (FMUs). Indeed FMUs play an essential role in defining complex CPSs through, e.g., the System Structure and Parametrization (SSP) standard. Simulation-based V&V of CPSs typically requires exploring different simulation scenarios (i.e., exogenous input sequences to the CPS under design). Many such scenarios have a shared prefix. Accordingly, to avoid simulating many times such shared prefixes, the simulator state at the end of a shared prefix is saved and then restored and used as a start state for the simulation of the next scenario. In this context, an important FMI feature is the capability to save and restore the internal FMU state on demand. This is crucial to increase efficiency of simulation-based V&V. Unfortunately, the implementation of this feature is not mandatory and it is available only within some commercial software. As a result, the interoperability enabled by the FMI standard cannot be fully exploited for V&V when using open-source simulation environments. This motivates developing such a feature for open-source CPS simulation environments. Accordingly, in this paper, we focus on JModelica, an open-source modelling and simulation environment for CPSs based on an open standard modelling language, namely Modelica. We describe how we have endowed JModelica with our open-source implementation of the FMI 2.0 functions needed to save and restore internal states of FMUs for ME. Furthermore, we present experimental results evaluating, through 934 benchmark models, correctness and efficiency of our extended JModelica. Our experimental results show that simulation-based V&V is, on average, 22 times faster with our get/set functionality than without it.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-190x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ Sinisi2021102277 Serial 186  
Permanent link to this record
 

 
Author (down) Pugliese, Rosario; Tronci, Enrico doi  openurl
  Title Automatic Verification of a Hydroelectric Power Plant Type Conference Article
  Year 1996 Publication Third International Symposium of Formal Methods Europe (FME), Co-Sponsored by IFIP WG 14.3 Abbreviated Journal  
  Volume Issue Pages 425-444  
  Keywords  
  Abstract We analyze the specification of a hydroelectric power plant by ENEL (the Italian Electric Company). Our goal is to show that for the specification of the plant (its control system in particular) some given properties hold. We were provided with an informal specification of the plant. From such informal specification we wrote a formal specification using the CCS/Meije process algebra formalism. We defined properties using μ-calculus. Automatic verification was carried out using model checking. This was done by translating our process algebra definitions (the model) and μ-calculus formulas into BDDs. In this paper we present the informal specification of the plant, its formal specification, some of the properties we verified and experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Oxford, UK Editor Gaudel, M.-C.; Woodcock, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 1051 Series Issue Edition  
  ISSN 3-540-60973-3 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ fme96 Serial 53  
Permanent link to this record
 

 
Author (down) Piperno, Adolfo; Tronci, Enrico pdf  doi
openurl 
  Title Regular Systems of Equations in λ-calculus Type Journal Article
  Year 1990 Publication Int. J. Found. Comput. Sci. Abbreviated Journal  
  Volume 1 Issue 3 Pages 325-340  
  Keywords  
  Abstract Many problems arising in equational theories like Lambda-calculus and Combinatory Logic can be expressed by combinatory equations or systems of equations. However, the solvability problem for an arbitrarily given class of systems is in general undecidable. In this paper we shall focus our attention on a decidable class of systems, which will be called regular systems, and we shall analyse some classical problems and well-known properties of Lambda-calculus that can be described and solved by means of regular systems. The significance of such class will be emphasized showing that for slight extensions of it the solvability problem turns out to be undecidable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ ijfcs90 Serial 60  
Permanent link to this record
 

 
Author (down) Piperno, Adolfo; Tronci, Enrico doi  openurl
  Title Regular Systems of Equations in λ-calculus Type Conference Article
  Year 1989 Publication Ictcs Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Many problems arising in equational theories like Lambda-calculus and Combinatory Logic can be expressed by combinatory equations or systems of equations. However, the solvability problem for an arbitrarily given class of systems is in general undecidable. In this paper we shall focus our attention on a decidable class of systems, which will be called regular systems, and we shall analyse some classical problems and well-known properties of Lambda-calculus that can be described and solved by means of regular systems. The significance of such class will be emphasized showing that for slight extensions of it the solvability problem turns out to be undecidable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Mantova - Italy Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ ictcs89 Serial 61  
Permanent link to this record
 

 
Author (down) Pappagallo, A.; Massini, A.; Tronci, E. pdf  doi
openurl 
  Title Monte Carlo Based Statistical Model Checking of Cyber-Physical Systems: A Review Type Journal Article
  Year 2020 Publication Information Abbreviated Journal  
  Volume 11 Issue 558 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MCLab @ davi @ Serial 181  
Permanent link to this record
 

 
Author (down) Melatti, Igor; Palmer, Robert; Sawaya, Geoffrey; Yang, Yu; Kirby, Robert Mike; Gopalakrishnan, Ganesh pdf  doi
openurl 
  Title Parallel and distributed model checking in Eddy Type Journal Article
  Year 2009 Publication Int. J. Softw. Tools Technol. Transf. Abbreviated Journal  
  Volume 11 Issue 1 Pages 13-25  
  Keywords  
  Abstract Model checking of safety properties can be scaled up by pooling the CPU and memory resources of multiple computers. As compute clusters containing 100s of nodes, with each node realized using multi-core (e.g., 2) CPUs will be widespread, a model checker based on the parallel (shared memory) and distributed (message passing) paradigms will more efficiently use the hardware resources. Such a model checker can be designed by having each node employ two shared memory threads that run on the (typically) two CPUs of a node, with one thread responsible for state generation, and the other for efficient communication, including (1) performing overlapped asynchronous message passing, and (2) aggregating the states to be sent into larger chunks in order to improve communication network utilization. We present the design details of such a novel model checking architecture called Eddy. We describe the design rationale, details of how the threads interact and yield control, exchange messages, as well as detect termination. We have realized an instance of this architecture for the Murphi modeling language. Called Eddy_Murphi, we report its performance over the number of nodes as well as communication parameters such as those controlling state aggregation. Nearly linear reduction of compute time with increasing number of nodes is observed. Our thread task partition is done in such a way that it is modular, easy to port across different modeling languages, and easy to tune across a variety of platforms.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Berlin, Heidelberg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2779 ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Mpsykg09 Serial 80  
Permanent link to this record
 

 
Author (down) Melatti, Igor; Palmer, Robert; Sawaya, Geoffrey; Yang, Yu; Kirby, Robert Mike; Gopalakrishnan, Ganesh pdf  doi
isbn  openurl
  Title Parallel and Distributed Model Checking in Eddy Type Conference Article
  Year 2006 Publication Model Checking Software, 13th International SPIN Workshop, Vienna, Austria, March 30 – April 1, 2006, Proceedings Abbreviated Journal  
  Volume Issue Pages 108-125  
  Keywords  
  Abstract Model checking of safety properties can be scaled up by pooling the CPU and memory resources of multiple computers. As compute clusters containing 100s of nodes, with each node realized using multi-core (e.g., 2) CPUs will be widespread, a model checker based on the parallel (shared memory) and distributed (message passing) paradigms will more efficiently use the hardware resources. Such a model checker can be designed by having each node employ two shared memory threads that run on the (typically) two CPUs of a node, with one thread responsible for state generation, and the other for efficient communication, including (i) performing overlapped asynchronous message passing, and (ii) aggregating the states to be sent into larger chunks in order to improve communication network utilization. We present the design details of such a novel model checking architecture called Eddy. We describe the design rationale, details of how the threads interact and yield control, exchange messages, as well as detect termination. We have realized an instance of this architecture for the Murphi modeling language. Called Eddy_Murphi, we report its performance over the number of nodes as well as communication parameters such as those controlling state aggregation. Nearly linear reduction of compute time with increasing number of nodes is observed. Our thread task partition is done in such a way that it is modular, easy to port across different modeling languages, and easy to tune across a variety of platforms.  
  Address  
  Corporate Author Thesis  
  Publisher Springer - Verlag Place of Publication Editor Valmari, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume 3925 Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-540-33102-5 Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Mpsykg06 Serial 81  
Permanent link to this record
 

 
Author (down) Melatti, I.; Mari, F.; Mancini, T.; Prodanovic, M.; Tronci, E. pdf  doi
openurl 
  Title A Two-Layer Near-Optimal Strategy for Substation Constraint Management via Home Batteries Type Journal Article
  Year 2021 Publication IEEE Transactions on Industrial Electronics Abbreviated Journal  
  Volume Issue Pages 1-1  
  Keywords  
  Abstract Within electrical distribution networks, substation constraints management requires that aggregated power demand from residential users is kept within suitable bounds. Efficiency of substation constraints management can be measured as the reduction of constraints violations w.r.t. unmanaged demand. Home batteries hold the promise of enabling efficient and user-oblivious substation constraints management. Centralized control of home batteries would achieve optimal efficiency. However, it is hardly acceptable by users, since service providers (e.g., utilities or aggregators) would directly control batteries at user premises. Unfortunately, devising efficient hierarchical control strategies, thus overcoming the above problem, is far from easy. We present a novel two-layer control strategy for home batteries that avoids direct control of home devices by the service provider and at the same time yields near-optimal substation constraints management efficiency. Our simulation results on field data from 62 households in Denmark show that the substation constraints management efficiency achieved with our approach is at least 82% of the one obtained with a theoretical optimal centralized strategy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes To appear Approved no  
  Call Number MCLab @ davi @ ref9513535 Serial 190  
Permanent link to this record
 

 
Author (down) Mazzini, Silvia; Puri, Stefano; Mari, Federico; Melatti, Igor; Tronci, Enrico pdf  openurl
  Title Formal Verification at System Level Type Conference Article
  Year 2009 Publication In: DAta Systems In Aerospace (DASIA), Org. EuroSpace, Canadian Space Agency, CNES, ESA, EUMETSAT. Instanbul, Turkey, EuroSpace Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract System Level Analysis calls for a language comprehensible to experts with different background and yet precise enough to support meaningful analyses. SysML is emerging as an effective balance between such conflicting goals. In this paper we outline some the results obtained as for SysML based system level functional formal verification by an ESA/ESTEC study, with a collaboration among INTECS and La Sapienza University of Roma. The study focuses on SysML based system level functional requirements techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number Sapienza @ mari @ Dasia09 Serial 20  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: